Effective medium theory for graphene-covered metallic gratings

نویسندگان

  • Saeed Farajollahi
  • Behzad Rejaei
  • Babak Rahmani
  • Amirmasood Bagheri
  • Amin Khavasi
  • Khashayar Mehrany
چکیده

We propose an effective medium theory for a one-dimensional periodic array of rectangular grooves covered by a graphene sheet. Parameters of the effective medium model are given by explicit analytical expressions for both major polarizations TM and TE, and for all incident angles. In extraction of this model, we assumed single mode approximation inside the grooves. The effect of non-specular diffraction orders outside the grating, as well as the plasmonic response of the graphene sheet in the far-infrared spectrum, is addressed by introducing an effective surface conductivity at the interface of the metallic grating and the ambient environment. It is shown that surface plasmons in graphene effectively capture diffracted waves in the metallic grating leading to near total absorption. Results of this work may pave the way for designing wide-band absorbers for terahertz applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Contrast Gratings based Spoof Surface Plasmons

In this work, we explore the existence of spoof surface plasmons (SSPs) supported by deep-subwavelength high-contrast gratings (HCGs) on a perfect electric conductor plane. The dispersion relation of the HCGs-based SSPs is derived analyt- ically by combining multimode network theory with rigorous mode matching method, which has nearly the same form with and can be degenerated into that of the S...

متن کامل

Polarization control using passive and active crossed graphene gratings.

Graphene gratings provide a promising route towards the miniaturization of THz metasurfaces and other photonic devices, chiefly due to remarkable optical properties of graphene. In this paper, we propose novel graphene nanostructures for passive and active control of the polarization state of THz waves. The proposed devices are composed of two crossed graphene gratings separated by an insulator...

متن کامل

Thermal vibration analysis of double-layer graphene embedded in elastic medium based on nonlocal continuum mechanics

This paper presents the thermal vibration analysis of double-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. The graphene is modeled based on continuum plate theory and the axial stress caused by the thermal effects is also considered. Nonlocal governing equations of motion for this double-layer graphene s...

متن کامل

A Novel Method for Considering Interlayer Effects between Graphene Nanoribbons and Elastic Medium in Free Vibration Analysis

A complete investigation on the free vibration of bilayer graphene nanoribbons (BLGNRs) mod-eled as sandwich beams taking into account tensile-compressive and shear effects of van der Waals (vdWs) interactions between adjacent graphene nanoribbons (GNRs) as well as between GNRs and polymer matrix is performed in this research. In this modeling, nanoribbon layers play role of sandwich beam layer...

متن کامل

Differential Quadrature Method for Dynamic Buckling of Graphene Sheet Coupled by a Viscoelastic Medium Using Neperian Frequency Based on Nonlocal Elasticity Theory

In the present study, the dynamic buckling of the graphene sheet coupled by a viscoelastic matrix was studied. In light of the simplicity of Eringen's non-local continuum theory to considering the nanoscale influences, this theory was employed. Equations of motion and boundary conditions were obtained using Mindlin plate theory by taking nonlinear strains of von Kármán and Hamilton's principle ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016